Three-dimensional single-sided Marchenko inverse scattering, data-driven focusing, Green's function retrieval, and their mutual relations.

نویسندگان

  • Kees Wapenaar
  • Filippo Broggini
  • Evert Slob
  • Roel Snieder
چکیده

The one-dimensional Marchenko equation forms the basis for inverse scattering problems in which the scattering object is accessible from one side only. Here we derive a three-dimensional (3D) Marchenko equation which relates the single-sided reflection response of a 3D inhomogeneous medium to a field inside the medium. We show that this equation is solved by a 3D iterative data-driven focusing method, which yields the 3D Green's function with its virtual source inside the medium. The 3D single-sided Marchenko equation and its iterative solution method form the basis for imaging of 3D strongly scattering inhomogeneous media that are accessible from one side only.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Green's function retrieval from reflection data, in absence of a receiver at the virtual source position.

The methodology of Green's function retrieval by cross-correlation has led to many interesting applications for passive and controlled-source acoustic measurements. In all applications, a virtual source is created at the position of a receiver. Here a method is discussed for Green's function retrieval from controlled-source reflection data, which circumvents the requirement of having an actual ...

متن کامل

Elastodynamic Green's function retrieval through single-sided Marchenko inverse scattering.

The solution of the inverse scattering problem for the one-dimensional Schrödinger equation is given by the Marchenko equation. Recently, a Marchenko-type equation has been derived for three-dimensional (3D) acoustic wave fields, whose solution has been shown to recover the Green's functions from points within the medium to its exterior, using only single-sided scattered data. Here we extend th...

متن کامل

Unified double- and single-sided homogeneous Green's function representations.

In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are ac...

متن کامل

A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their s...

متن کامل

Review paper: Virtual sources and their responses, Part II: data-driven single-sided focusing

In Part I of this paper, we defined a focusing wave field as the time reversal of an observed point-source response. We showed that emitting a time-reversed field from a closed boundary yields a focal spot that acts as an isotropic virtual source. However, when emitting the field from an open boundary, the virtual source is highly directional and significant artefacts occur related to multiple ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 110 8  شماره 

صفحات  -

تاریخ انتشار 2013